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IP1 — Lecture 18: Motion Analysis 2

Optical Flow and Segmentation

The optical flow smoothness constraint is not valid at occluding boundaries

("silhouettes"). In order to inhibit the constraint, one may try to segment the image
based on optical flow discontinuities while performing the iterations.

_ (From B.K.P. Horn, Robot Vision, 1986)
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Optical Flow Patterns

Complex optical flow fields may be segmented into components which show
a consistent qualitative pattern.

Qualitative flow patterns:
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General translationresultsin a flow pattern with a focus of expansion (FOE):
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As the direction of motion changes, the FOE changes its location.
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Optical Flow and 3D Motion |

In general, optical flow may be caused by an unknown 3D motion of an
unkown surface. How do the flow componentsu’, v depend onthe 3D
motion parameters?

Assume camera motionin a staticscene, optical axis = z-axis, rotationabout
the origin.

image plane at

f=1

rotation vy~ optiFaI 3D velocity v =| v
axiso _axis 2
________ X
______________ scenepoint 7 =| y
t:—_|_ — u' Z
optica 2D velocityy' =
center V'

3D velocityv of a point 7 is determined by rotational velocity @ and
translational velocityt:

V=—t—-WXr
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Optical Flow and 3D Motion Ii

By taking the component form of Vv =—f —@x7 with 7’ = (tx L, tZ) L, ! = (a b c)
and 7’ = (x y Z) and computing the perspective projection we get

' .X.: XZ t ! ! t ! !/

U=———=|-==b+cy |-x|-"-ay +bx
< Z < <

_ Y W L (1 ' B!

V=t-Z=l-=—cx+al-y|-=-ay +bx
< Z < Z

Observation of # “and v “at location (x *, y *) gives 2 equations for 7 unknowns. Note
that motion of a point at distance kz with translation k¢ and the same rotation o will

give the same optical flow, k£ any scale factor.

The translational and rotational parts may be separated:

'
, L orext
u translation — u rotation
<
'
, RS ,
4 translation —
<

For pure translation we have 2 equations for 3 unknows (z fixed arbitrarily).

=ax'y’-b(x"> +1) + ¢y’

12 [ l
V' oaion=a(y "+1)-bx'y +cx
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3D Motion Analysis Based on
2D Point Displacements

2D displacements of points
observed on an unknown
movingrigid body may provide
informationabout

e the 3D structure of the points

e the 3D motion parameters

Cases of interest: Rotating cylinder experiment

e stationary camera, moving object(s) gy Splingaiiaed)

. . . . .
moving camera, stationary object(s) camera motion parameters

* moving camera, moving object(s) may be known
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Structure from Motion |

Ullman showed 1979 that the spatial structure of 4 rigidly connected non-
coplanar points may be recovered from 3 orthographicprojections.

O,A,B, C 4 rigid points

a, l;, ¢ vectorsto 4, B, C

11;, I, 11; projection planes

Xo Vi coordinate axes of P;

a, [;l_, ¢ coordinate pairs of points

A, B, C in projection plane /],
projection plane P,

The problemisto determine the spatial orientations of I7,, I1,, IT; from the 9

projection coordinate pairs a, b, ¢, ,i =1, 2, 3.

The 3 projection planes intersect and form a tetrahedron.
U,, Uy, Uy, areunit vectors along the intersections.
The idea is to determine the i, ; from the observed coordinates g, b, ¢,
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Structure from Motion Il

The projection coordinates are:

_ =T _=T=
a =a x, a =a
_ . T = 7T —
— _’T_’ — —
¢, =C X, Cl,=c V

* ¥

Since each ﬁij lies in both planes /7, and I7, it can be written as

ﬁi' = ai";éi + ﬁyl y” = = r
S > X+ by, = ViX; T 5yj
U; =y;X;+0y,

Multiplying with(a)".(5) . (c) we get
a,a; + [J’Cliy =y,4, +0a i
a;b, + /J)biy =y,b; + 5bjy

a,c; +pc; =y,c; +0c;

Solve foray;, B, v, 0;. usingthe constraintso,” + ;7 = 1 and y,°+6,° = 1
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Structure from Motion Il

From the coefficientsa,;, f;; Vip 51] one can compute the distances
between the 3 unitvectors u,,, U,,, Uy, :

dl = ”ﬁ23 - ﬁu” = ||(O{23 - alZ)';":i + (/523 - ﬁlZ)yi” 7 (0‘23 12) (/3’23 /512 )2
d, = (a31 — Q3 )2 + (/331 - B )2
d3 = (a12 - 0531)2 + (/312 - /3)31)2

Hence the relative angles of the projection planes are determined.

d;. 4

The spatial positions of A, B, C relative to the projection planes (and
to the origin O) can be determined by intersecting the projection rays
perpendicularonthe projected points a. b, C.

12 70 gt
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Perspective 3D Analysis of
Point Displacements

* relative motion of one rigid object and one camera
e observation of P points in M views

For each point\7 in 2 consecutive images we have:

Vo =RV, motion equation

= )Lp nV pm projection equation @

ForP pomts in M images we have

3IMP unknown 3D point coordinates ﬁp’m B . \72 "
6(M-1) unkown motion parameters R,, and fm . v ’
MP unknown projection parametersip’m S
3(M-1)P motion equations
3IMP projection equations M | P
1 arbitrary scaling parameter 2__5
2 3 | 4
# equations > # unknowns =2 P23+m 2 4 | 4
5 4
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Essential Matrix

Geometrical constraints derived from 2 views of a pointin motion

*  motion between image m and m+1 may be 4’
decomposed into

1. rotation R,, about origin of coordinate
system (= optical center)

2. translation 7,

* observations are given by direction vectors
fzmand ﬁm+1 along projection rays.

—

- - — e, YW A
R n .t and 5 arecoplanar: (tmemnm) i =0

m "m?® “m

v

=0 FE = essential matrix

| | |
W|thEm= [ XF [ X T XTI andRm=

m 1 m

After some manipulation} n E n

m+1
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Solving for the Essential Matrix

n ) W =0 formally one equation for 9 unknownse;;

But:
* only 6 degrees of freedom (3 rotation angles, 3 translation components)

* ¢;canonly be determined up to a scale factor

Basic solution approach:
e observe P points in 2 views, P >> §

* fix e;; arbitrarily
* solve an overconstrained system of equations for the other 8 unknown coefficients e;

E may be decomposed intoSand R by Singular Value Decomposition (SVD).

0 -z ¢
z y
E may be written as £ = S R with R = rot. matrixands=| r 0 -
Note: S (and therefore E) has rank 2 t t 0
y X
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Singular Value Decomposition of £

Any mxn matrix 4, m > n, may be decomposedas 4 = UD V' where
e U hasorthonormalcolumns mxn
« D isnon-negativediagonal #nxn
VT hasorthonormal rows nxn

This can be appliedto Eto give E = U D V' with:

R=UGVI or R=UG' VT

S=VZWV"
O 1 0 O -1 0
where G=| -1 0 O andZ =1 0 O
0O 0 1 O 0 1
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Alternative 3D Motion Constraint

Nagel and Neumann 82

Consider 2 views of 3 pointsv_, ,
p=1..3m=172

The planesthroughR 7  andn,,
allintersectin 7

- the normals of the planes are
coplanar!

- —\T
Coplanarity condition for 3 vectors a, b, ¢: (&x b) ¢=0 hence:

T
((Rmnl,m X nl,m+1) X (Rmn2,m X n2,m+1 )) (Rmn3,m X n3,m+1)= 0

Nonlinear equation with 3 unknown rotation parameters.

=> Observation of at least 5 pointsrequired to solve for the unknowns.

v
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Reminder: Homogeneous Coordinates

 (N+1)-dimensional notation for pointsin N-dimensional Euclidean space

* allowstoexpress projection and translation aslinear operations
Normal coordinates: vl =(xy z)

Homogeneous coordinates: V' =(wx wy wz w)  w #0 is arbitrary constant

Rotation and translation in homogeneous coordinates:

V= AV with A=| K !
|

—

0

Projection in homogeneous coordinates:

f 0 0 Divide the first N components by
V=Bv with B=| 0 f 0 the (N+1)th componentto
0 0 1 recover normal coordinates
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From Homogeneous World Coordinates to

Homogeneous Image Coordinates

—T .
V= (x y Z) scene coordinates

e r " " H H
— image coordinates
(¥v,) =(x) ;) mae

wxg X X
" g y y e —
wy, |=| KR Kt =M = v, =Mv
V4 V4
w
1 1
fa = scaling in xp-axis
fa fb X, fc = scaling in yp-axis
K=| 0 f intrinsic camera parameters /b = slant of axes
Yno ("camera calibration matrix”) Xpg, Ypo = "principal point"
0 0 1 (optical center in image plane)
Rt extrinsic camera parameters
M = 3 x 4 projective matrix




